










































































































Chapter 1: Tensors in Rectilinear Coordinates in Tw o Dimensions56

It is clear that

whence  and  are orthogonal. We then normalize by requiring that

The pair  then forms an orthogonal basis system of unit vectors or an
orthonormal system.

The expansion of a given vector in terms of other vectors suggests an inquiry as to
whether tensors in general may be expanded as products of the appropriate number and
kind of vectors. The answer is contained in a general Product Theorem that any
tensor may be represented as the sum of products of vectors.

To prove that this is so, we need only provide a general construction by which such
a representation might be achieved in one particular coordinate system. Since the sum
of tensors is a tensor and since a product of vectors is a tensor, it then follows that the
sum of the products of vectors is a tensor. It suffices, therefore, if the constructed tensor
has the given components in the given coordinate system.

Suppose that the tensor is of order q, with components  Let these 
components be arranged dictionary-wise, i.e., arranged in order of the values of the first
contravariant index, then the succeeding contravariant indices, and finally the several
covariant indices. Now define  vectors, enumerated dictionary-wise according to
(j, ... k, l, ...),

whose components are  respectively, in the given coordinate system; here the
parentheses are meant to indicate that the indices are purely enumerative and do not
possess tensorial character. The  components of the tensor  have thus been
distributed over the  components of the  vectors.

The next step in the construction is to form the sum of products

where the various  and  are basis vectors. The several sums are the components
of the tensor whose components are  To be convinced of this, consider one sum
at a time; thus

etc., until finally all parentheses are removed. One may also simply observe that the
contracted product with  summed over j simply substitutes m for j. The end result is
again the same.
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The theorem we have just proven is important not so much because it prescribes to
us how actually to resolve given tensors into sums of products of vectors, but because
it amounts to an existence theorem, guaranteeing that some such resolution is possible.
Clearly, it is in some respects a converse of the Quotient Theorem, which it
complements in a useful way. We will have occasion in what follows to appeal to this
Product Theorem.

Ex. (15.8) Form an orthogonal system from the Cartesian vectors

Ans.

Ex. (15.9) (a) Show that  (b) Show that 
where

Ex. (15.10) Show that if a tensor  is the simple product  of two
vectors, then it is necessary that the determinant  (b) Can the
fundamental tensor be so represented? (c) How many vectors are required for
the representation in Ex. (15.9)?

Ans. (a)  (b) Since by Ex. (14.4) 

 (none of  nor  can be
zero), the fundamental tensor cannot be represented as the simple product of
vectors. (c) Four.

Ex. (15.11) (a) Show that any vector may be written as  where
 is the tensor

 and  being unit basis vectors,  the angle between them. (Hint:
combine equations (15.11) and (15.18).) (b) Show that   Such a
tensor is called a projection operator. (c) Hence show that the Kronecker
delta  is a projection operator, and that its resolution in terms of the basis
vectors  is that given in (a).
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Ex. (15.12)  Show that  in two dimensions any mixed tensor  can  be  expressed  as

for suitably chosen vectors 

Ex. (15.13) (a) Given the transformation of Ex. (14.2) and the resultant
fundamental tensor, what are the scale factors along the new axes and the
angle between the axes? (b) What are the unit vectors along the new axes in both
the old and new coordinate systems? (c) Calculate the inner products of the unit
vectors along the   and   axes with the unit vector along the axis. Since
these are the cosines of  and  determine these angles. (d) The angle
between the axes of the coordinates is  Use the result of
(a) to check your answer. (e) What is the inverse of the transformation of Ex.
(14.2)? (f) Use the coefficients  together with the equation

from Appendix 1.3 to check your determination of 

Ans.
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16. Antisymmetric Tensors and the Generalized Kronecker Delta

We have noted that a tensor of order two or higher may be antisymmetric in
any pair of covariant indices or any pair of contravariant indices. This means, for

example, that  is antisymmetric in  and  if

In two dimensions, a tensor of higher order may be antisymmetric in at most pairs of
subscripts or pairs of superscripts or both, since antisymmetry in more than two subscripts,
for example, would require every component to be equal to its own negative, hence zero.

Aside from sign, therefore, a completely antisymmetric second order tensor has but
one non-zero component, as  The only other non-vanishing component is

Consider now the tensor  which is antisymmetric in  and  as well as  in   and
. Let its non-zero components be (a) +1 if  and  are both distinct pairs and both even

or both odd permutations of 12, (b) – 1 if  and  are both distinct pairs and one is even
and the other an odd permutation of 12, and (c) zero otherwise. This tensor is called the
generalized Kronecker delta, of rank four.

The generalized Kronecker delta may be simply expressed in terms of the usual
Kronecker delta, namely as

(16.1)

Such a decomposition is oftentimes useful in reducing inner products of tensors with
generalized Kronecker deltas. So also are such relations as

(16.2)

Since the components of  have the same values in all coordinate systems, by
equation (16.1) so also do the  This is an exceptional property.

Consider now a tensor of rank two whose components in a Cartesian coordinate
system are

(16.3)

Its components in some other coordinate system will be



Chapter 1: Tensors in Rectilinear Coordinates in Tw o Dimensions60

This is clearly antisymmetric in  and . Hence it is zero unless  The only
non-vanishing component is numerically equal to

This may be given a more familiar and more useful form. To this end, we write

(16.4)

Therefore

(16.5)

In equation (16.5) we have chosen the positive square root on the assumption that
the coordinate system is right-handed. This means that unit vectors along the two
coordinate curves are in the same relation as thumb and forefinger of the right hand
when the pointer finger is parallel to the axis. More generally, it means that the
positive axis makes an angle less than  with the positive axis. If the
coordinate system were left-handed, we should need to choose the negative square root
of , whence equation (16.5) would be replaced by
(16.6)

By a similar development, we may readily define a contravariant antisymmetric
tensor of the second rank which is given by

(16.7)

where  in a Cartesian coordinate system. The relation between the  and
the  is very simple, namely

(16.8)

as may be verified most simply by considering the values of the separate components.

The generalized Kronecker delta  is often useful for the purpose of forming or
isolating the antisymmetric part of any second rank tensor. Thus, if a tensor  is the
sum of a symmetric part  and an antisymmetric part   we have that

But
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Figure 20

and

since it is zero if

Therefore

(16.9)

A similar procedure is clearly possible for contravariant tensors 

The usefulness of the antisymmetric tensor  may be illustrated by giving it a
representative  application. Thus,  we  form  from    and  two  arbitrary  vectors 
and  the invariant

Because this is an invariant, its value and meaning in one coordinate system is the same
as in any other. We therefore choose as a most convenient coordinate system a set of
Cartesian axes, of which the axis lies along  (see Fig. 20). This implies that

 while  Then, since ,

(16.10)

This is clearly the area of the parallelogram AOBC. The result is as true when   and 
are differential vectors along the coordinate axes; this result will be helpful in computing
areas by integration, especially in non-rectilinear coordinates.

Ex. (16.1) Show that the condition that two unit vectors  and  be
distinct is that either














































