






























































































































































56 Chapter 1: Tensors in Rectilinear Coordinates in Tw o Dimensions

It is clear that
¢! 2 1
V(z)” (u(z)” )) ‘(u(1) ())(ua)”()) =0,
WhenceTr(iz) andi(l) are orthogonal. We then normalize by requiring that

-1
V)

Uay =
| V) |

The pairﬁ("l), ﬁ(;) then forms an orthogonal basis system of unit vectors or an
orthonormal system.

The expansion of a given vector in terms of otleeters suggests an inquiry as to
whether tensors in general may be expanded as produwtsapigropriate number and
kind of vectors. The answer is contained in a garferoduct Theorem that any
tensor may be represented as the sum of products of vectors

To prove that this is so, we need only provide a general construction by which such
a representation might be achieved in one particular coordinate system. Since the sum
of tensors is a tensor and since a product of vectors is a tensor, it then follows that the
sum of the products of vectors is atensor. It suffitesefore, if the constructed tensor
has the given components in the given coordinate system.

Suppose that the tensor is of ordgrwith componentST Let thes¥
components be arranged dictionary-wise, i.e., gadim order of the values of the first
contravariant index, then the succeeding contravarlant indices, and finally the several
covariantindices. Now defir®? ~!  vectors, enumerdietibnary-wise according to
G, .-k, I, ),

Vl(l )
(kl.)>
whose components af;”,  respectively, in the given coordinate system; here the
parentheses are meant to indicate that the indices are purely enumerative and do not
possess tensorial character. ?fe ~ components of the Efjsor have thus been
distributed over th€4 components of the ! vectors.

The next step in the construction is to form the sum of preduct

iG.) _ iG.)y ,m . (k) (),
T _,- Zk:l VL) EG) e €y s

where the varlous(/) ande ) are basis vectors. The several sums are the cENO
of the tensor whose componentsﬁ[{ﬁ To be convinced of this, consider one sum
at a time; thus
_ oim(.)
2 RO V(kl )

(k)
2V(kl) n - n(l )2

etc., until finally all parentheses are removed. One may also simply observe that the
contracted productwnbb) summed oysimply substitutemforj. The end resultis
again the same.
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The theorem we have just proven is important natsch because it prescribes to

us how actually to resolve given tensors into sahpgsoducts of vectors, but because
itamounts to an existence theorem, guaranteeatgdmesuch resolution is possible.
Clearly, it is in some respects a converse of thmt@nt Theorem, which it
complements in a useful way. We will have occagiomhat follows to appeal to this
Product Theorem

Ex. (15.8) Form an orthogonal system from the Caate vectors
W(ll) = (_29_3)9 W(l2) = (134)
- 15 10
s V(2) - - » s

13/17 1317

i —_—
Uy =

i)
B
L)
e
Ex. (15. 9) (@) Show tha; = e ey.  (b) Show thgt = E Vo s
Wherev (gll,g21) V,(z) (g129g22)

Ans.

‘wﬁ“m
W

Uiy =

Ex. (15.10) Show that if a tensdr,,  is the simpledpct 4,5, of two
vectors, then it is necessary that the determlnaht| =0. (b) Can the
fundamental tensor be so represented? (c) How many vectors are required for
the representation in Ex. (15.9)?

ab,  ab,
Ans. (@) |a,b,| = (b) Since by Ex. (14.4)
! a,b, a,b,
lg,;| = (sWs®)sin’6,, # 0 (none ofs, s@ norsin6,, can be

zero) the fundamental tensor cannot be represented as the S|mple product of
vectors. (c) Four.

Ex. (15.11) (a) Show that any vector may be writtea’as P{ al where
P’ is the tensor

P] _ —[(ul(l) (2 cose)u(l) + (u(2) i(l)cose)u(é)]’
12

u(l) and u(z) being unit basis vector,  the angle betvteem. (Hint:
combine equations (15.11) and (15.18).) (b) ShowRﬁBi;c P, Such a
tensor is called a projection operator. (c) Hence show that the Kronecker
deltaﬂ,'c is a projection operator, and that its ragabn in terms of the basis

vectorSu,.(k) is that given in (a).
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Ex. (15.12) Show that in two dimensions any nie@sbr can be expressed as
P .
T; = a’uj + b’Vj
for suitably chosen vectoes’, b, U, Vv,

Ex. (15.13) (a) Given the transformation of Ex. (14.2) and the resultant
fundamental tensor, what are the scale factors along thecriew axes and the
angle between the axes? (b) What are the unit keeatong the new axes in both

the old and new coordinate systems? (c) Calcufet@iner products of the unit
vectorsalongthe! and?*-  axeswith the unit veaitung thex ! - axis. Since
these are the cosines Bf; afigs,  determine thesesingl) The angle

betweenthe axes ofthé-  coordinateBsis = 6,5 - 6,7. Use thé# ofs
(a) to check your answer. (e) What is the inverse of the transformation of Ex.

(14.2)? (f) Use the coefficien@i together with the equation

sin O
tanﬂﬁ = 12

cos0, - —

from Appendix 1.3 to check your determinatior® of .

Ans.
- - &12 5y221
(a) sW =13,5® = /17, cos O = =

V§11§22 221

b

B = 70°2046" .

=i _| /13 i | 3/13 213 | .
(b) Ad)‘ F’O ,Ad)— 3 )
A,i— - O @ A,i— - _\/ﬁ 4\/ﬁ
@) 17 )@ 17 ° 17

(c) 8,7 =33°41/24", 0,5 = 104°2/10".

|
[

i(4x1 +x2),
(e) x'=a'x’ = 14
1

= 14(— 2x! + 3x2).
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16. Antisymmetric Tensors and the Generalized Kronecker Delta

We have noted that a tensor of order two or higher may be antigymetric in
any pair of covariant indices or any pair of contravariant indices. This means, for
example, thatr,,. is antisymmetricin and if

aij = - aji.

In two dimensions, a tensor of higher order may be antisymmetric in at most pairs of
subscripts or pairs of superscripts or both, sinieymmetry in more than two subscripts,
for example, would require every component to be equal tolitmegative, hence zero.

Aside from sign, therefore, a completely antisymmetric second order tensor has but
one non-zero component, as, . The only other non-vanishmgauent is

dy1 = 7 9y
Consider nowthetenséf/, whichis antisymmetricin jand aswellias in  and
I . Letits non-zero componentsbe (a) +fif &hd dredistinct pairs and both even
or both odd permutationsof 12, (b)—Ijif add are both distirstgnd one is even
and the other an odd permutation of 12, and (c) zero otherwise. This tensor is called the
generalized Kronecker delta of rank four.

The generalized Kronecker delta may be simply expressed in terhes usual
Kronecker delta, namely as i i
6k 6l
& 8
Such a decomposition is oftentimes useful in reayiziner products of tensors with
generalized Kronecker deltas. So also are such relations as

(16.1) 8% = 8,8, - 88, =

(16.2) By, = By + By = &, B =8 =2.

ij

Since the components 6f. ~ have the same values in all coordinate systems, by
equation (16.1) so also do tid¢, . This is an exceptional property.

Consider now a tensor of rank two whose comporiarg<artesian coordinate
system are

12 142 142
Its components in some other coordinate system will be

- 9x* ax! _ 8x

2
P 7 oxm axm ¥ axm ox” %8 - 8%
ox! ox!
ox! 9x2  9x* ax! | ox™ ox"
CoEmaxt  oxmext | ox?  ax?
ox™ ox™
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This is clearly antisymmetricim amd . Hence itis aemessm = n. The only
non-vanishing component is numerically equal to

ax! ax!
o, | et ex

812 e aLZ a—x2 .
ox!  0ox?

This may be given a more familiar and more useful form. Toetinik we write

ox* ox! ox* | | ax! oxi [
(16.4) g =lg,,| = | =— 8, |=|Z|-| = |18, = | 2=
ox™ ox" ox™ ox" ox’
Therefore
(16.5) e, = Vge,,-

In equation (16.5) we have chosen the positive square root on the assumption that
the coordinate system is right-handed. This means that unit vectors along the two
coordinate curves are in the same relation as thumb and forefinger of the right hand
when the pointer finger is parallel to thé-  axis. More generally, it means that the
positive x“- axis makes an angle less tH&0° with the positive axis. If the
coordinate system were left-handed, we should need to choose the negative square root
of g, whence equation (16.5) would be replaced by

(16.6) e, = - yge,,.

By a similar development, we may readily defineatavariant antisymmetric
tensor of the second rank which is given by

(16.7) gnn = L gmn

wheree™ = 877 ina Cartesian coordinate system. The relation betweeh the  and
thee,, is very simple, namely

(16.8) ee, = ieij\/gekl =eVe, = 87,
Vg
as may be verified most simply by considering thie&s of the separate components.

The generalized Kronecker deﬁﬁ, is often useful for the purpose of forming or
isolating the antisymmetric part of any second rank tensor. Thus, if a tgnsor  is the
sum of a symmetric past, and an antisymmetric Ryt we have that

1 ij | Y
Etijél:l = Eal:l(sij ta,).

But
1

g sl2 21 a2 2 _os12 s12 ~
6klsij =048y * Ok Sy = (B + 048, = (B — 84)sy, =0
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| T} 1 <12 21
and Eaf:laij = 5(61(1 aj, + 8j;ay)

1 12 12 12
= 5(6k1 a;, *+ [—6k1][—6112]) = 64 a;, = ay
since it is zero if

k=1,a, ifk=1,1=2,anda,, = -a, ifk=2,1=1.

Therefore

| T
(169) akl = Eagltij'

A similar procedure is clearly possible for contravariansorst ¥ .

The usefulness of the antisymmetric tensgr maijllsrated by giving it a
representative application. Thus, we form frepp and two arbitrary vectors®

andb ! the invariant
A=¢ a"p!.

Because this is aninvariant, its value and meanioge coordinate system is the same

as in any other. We therefore choose as a most convenient coordinate system a set of
Cartesian axes, of which thd -  axis lies alarg (see Fig. 20). This implies that
a’ = (a,0)whileb’ = (bcos0,bsin0). Then, sincg=1 ,

(16.10) A =¢g,a*b! =absin® + 0 = absinb.
This is clearly the area of the parallelogram AOBRE: resultis as true when'  and

are differential vectors along the coordinate atkesresult will be helpful in computing
areas by integration, especially in non-rectilinear coates.

G {:' A

Figure 20

Ex. (16.1) Show that the condition that two unit vectgls @by be
distinct is that either

i Jj i J
gyt < 1 Or €,uq) Uz > 0.





































































